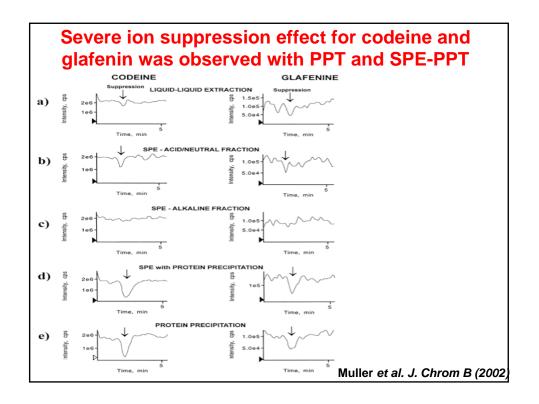
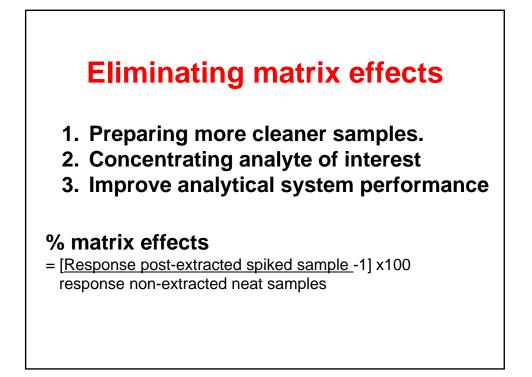
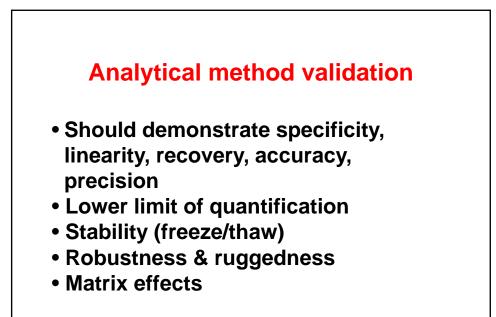

Choice of Good Internal Standards

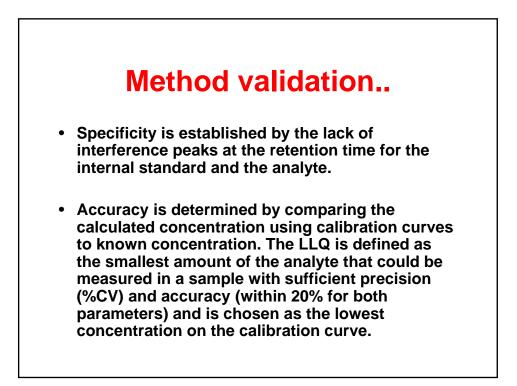

- A stable isotopically labeled IS is preferable.
- Is not found in the original sample
- In the absence of stable isotopically labeled internal std, the structure of the internal standard needs to be similar to the analyte and co-elute with the analyte.
- Should not react chemically with the analyte.

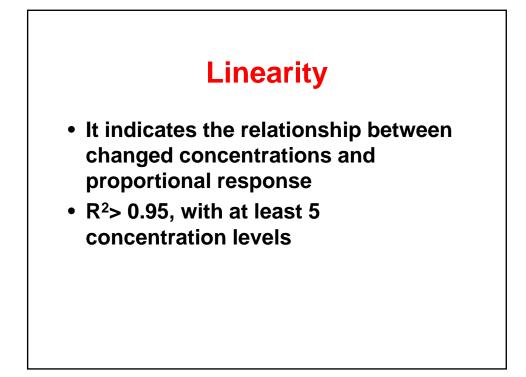

Problems encountered in LC-MS analysis Matrix effect on Ion suppression?

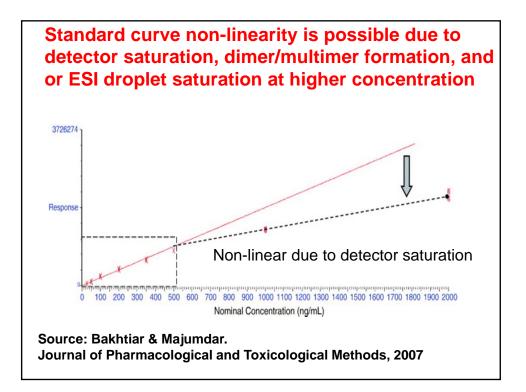

- The presence of endogenous substances from matrix, i.e., organic or inorganic molecules present in the sample and that are retained in the final extract
- Exogenous substances, i.e., molecules not present in the sample but coming from various external sources during the sample preparation

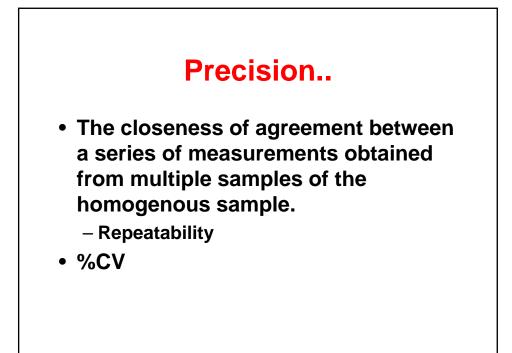


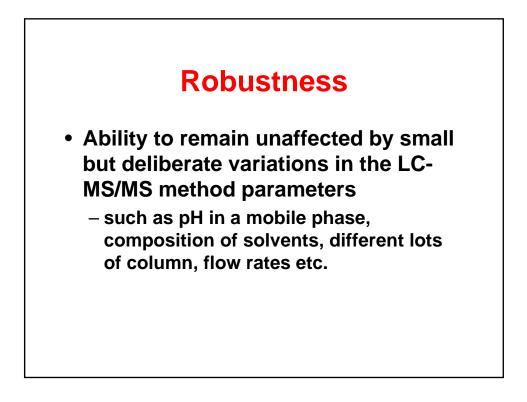


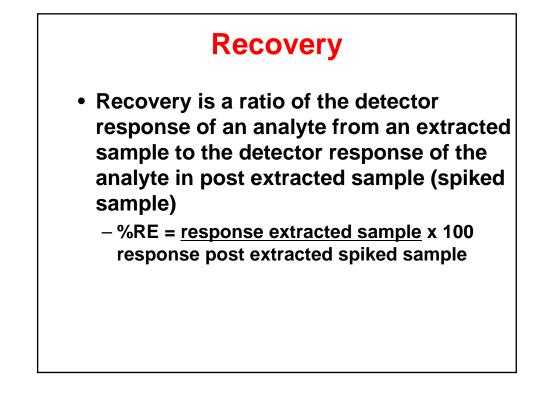






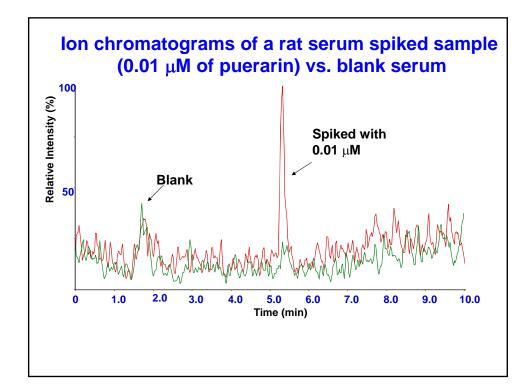


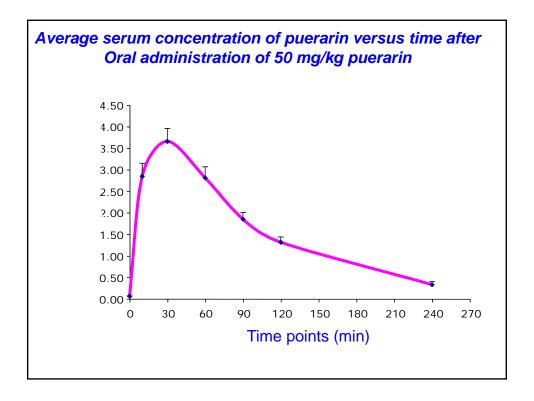


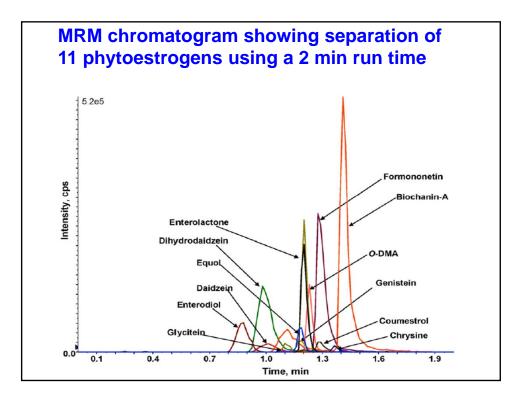


Ruggedness

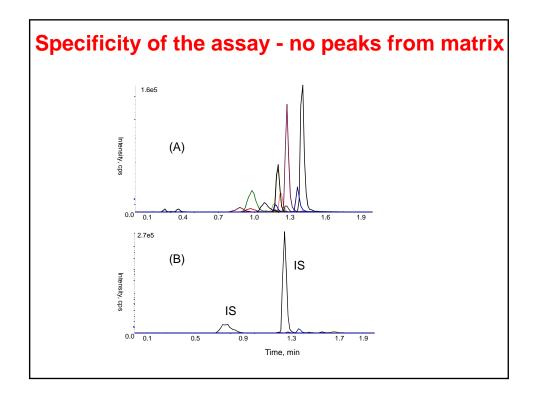
 Indicates degree of reproducibility of test results under a variety of conditions such as different labs, instruments and reagents, etc.




Column: Wate	ers X-Terra C18 with guard,
	(100 mm, 3.5 micron
Mobile Phase A: 10%	MeCN + 10 mM NH4OAc
Mobile Phase B: 70%	MeCN + 10mM NH4OAc
Gradient: 0 mi	nutes = 100% A
6 mi	nutes = 100% B
7 mi	nutes = 100% A
10 m	ninutes = Stop
Injection Volume:	20 ul
Flow Rate:	0.2 ml/min split flow
Mass Spectrometer:	Negative Electrospray
Mass Transitions:	415/267 (Puerarin)
	415/295 (Puerarin)
	269/149 (apigenin, IS)


able 1. ummary of calibratior	curves (n =5)		
Concentration (ng/ml)	Mean ± S.D.	CV (%)	Accuracy (%)
2.0	2.21 ± 0.16	7.00	110.7
5.0	5.22 ± 0.28	5.30	104.48
50	45.32 ± 2.53	5.60	90.64
500	473.60 ± 26.57	5.60	94.72
1000	1021.20 ± 71.53	7.00	102.12
5000	5340 ± 420.18	7.90	106.80
Mean r = 0.996			

Concentration (ng/ml)	Mean ± S.D.	CV (%)	Accuracy (%)
2.0	2.21 ± 0.16	7.00	110.7
4.0	3.96 ± 0.30	7.90	99.20
8.32	7.32 ± 1.00	14.40	113.30
20	19.20 ± 1.20	6.30	96.00
200	203.20 ± 19.41	9.60	101.60
832	821.18 ± 55.86	6.80	101.31
2000	2240 ± 96.70	4.30	112.00


Table 2. Assay validation characteristics of the method for the determination of puerarin in rat serum (n =5)

Analyte	Q1/Q3	Dwell (msec)	DP (V)	CE (eV)	CXP (V)
Equol	314/119	50	-65	-30	-5
Daidzein	253/132	50	-65	-55	-10
Dihydrodaizein	255/149	50	-50	-30	-9
O-DMA	257/108	50	-70	-40	-5
Genistein	269/133	50	-75	-40	-5
Glycitein	283/184	50	-65	-45	-5
Formononetin	267/251	50	-75	-35	-5
Coumestrol	267/91	50	-50	-50	-2
Biochanin A	283/268	50	-70	-30	-5
Enterolactone	297/253	50	-80	-30	-10
Enterodiol	301/253	50	-70	-30	-9
Phenophthalein	317/93	50	-50	-20	-5
4-MU .	175/119	50	-50	-38	-4
Chrysin	253/143	50	-50	-50	-5
DP = Declustering	potential				
CE = Collision en					

Calibration range and lower limit of Quantification (LLOQ) of analytes

Analyte	Calibration range (ng/ml)	LLOQ (ng/ml)
Equol	1 - 5,000	1
Daidzein	2 - 5,000	2
DHD	2 - 5,000	2
O-DMA	1 - 5,000	1
genistein	2 - 5,000	2
Glycitein	5 - 5,000	5
Formononetin	1 - 5,000	1
Coumetsrol	1 - 5,000	1
Bichanin-A	1 - 5,000	1
6-OH-ODMA	20 - 5,000	20
Enterodiol	2 - 5,000	2
Enterolactone	1 - 5,000	1

Analyte	Nominal concentration (ng/mL)	Accuracy (%	5)		Precision	(%CV)		Inter-day
		Day 1	Day 2	Day 3	Day 1	Day 2	Day 3	
Equol	50	100.42	90.13	96.60	2.01	4.33	5.11	3.74
	500	103.30	99.85	114.66	2.31	5.61	1.93	2.97
	2000	97.60	89.90	103.96	6.11	10.61	10.13	8.34
Daidzein	50	99.98	102.73	94.04	4.35	6.44	8.23	6.62
	500	101.48	98.31	97.73	3.14	5.44	7.42	5.38
	2000	92.50	87.41	86.03	2.88	3.61	3.96	3.58
Dihydrodaidzein	50	103.00	100.15	101.66	3.94	1.43	4.99	3.63
	500	103.79	95.20	106.00	3.96	6.44	3.35	4.34
	2000	91.70	90.40	96.33	1.68	5.80	6.60	2.82
O-DMA	50	104.00	93.72	96.51	5.16	4.71	5.80	5.32
	500	105.67	93.78	102.33	3.22	9.42	5.54	5.84
	2000	101.20	93.57	100.93	5.53	5.37	6.53	3.63
Genistein	50	107.66	106.83	99.08	3.97	3.37	6.65	4.86
	500	97.50	88.90	91.36	5.40	3.61	5.60	4.96
	2000	95.13	92.28	93.38	2.63	3.97	4.17	3.59

Compound	Nominal Concentration	Mean measured con autosampler at 4 ⁰ C, 72h	
F			
Equol	50 500	43.35 ± 2.50	45.68 ± 3.98
		487.80 ± 9.20	475.66 ± 30.16
Deidaein	2000	1793.33 ± 67.42	1921.66 ± 94.74
Daidzein	50	47.03 ± 2.50	50.83 ± 1.87
	500	534.20 ± 21.05	491.66 ± 7.17
Dilau alua al ai alua in	2000	1848.33 ± 72.77	1861.66 ± 71.67
Dihydrodaidzein	50	45.55 ± 1.97	47.52 ± 5.23
	500	485.83 ± 26.35	219.20 ± 15.90
	2000	1738.33 ± 85.18	828.50 ± 27.01
O-DMA	50	48.31 ± 3.75	54.80 ± 5.67
	500	469.16 ± 24.01	534.66 ± 28.57
Operintain	2000	1861.66 ± 114.61	2151.66 ± 110.89
Genistein	50	50.90 ± 3.19	51.16 ± 3.34
	500	487.33 ± 33.15	497.33 ± 37.59
Oh a lite in	2000	1875.00 ± 116.40	2190.00 ± 11.83
Glycitein	50	44.31 ± 2.44	40.15 ± 1.98
	500	481.00 ± 39.11	489.50 ± 28.26
	2000	1886.66 ± 87.10	2045.00 ± 191.91
Formononetin	50	47.36 ± 4.16	47.58 ± 3.22
	500	512.33 ± 26.41	507.66 ± 27.82
	2000	2018.33 ± 106.09	1925.00 ± 167.06
Coumestrol	50	46.26 ± 6.68	56.80 ± 2.37
	500	549.33 ± 36.74	498.00 ± 26.1
	2000	2120.00 ± 104.30	1905.00 ± 128.17
Biochanin A	50	52.47 ± 2.27	56.10 ± 1.49
	500	444.00 ± 29.81	523.00 ± 23.34
	2000	1893.33 ± 202.06	2130.00 ± 88.31
Enterodiol	50	44.96 ± 3.45	46.84 ± 2.47
	500	488.16 ± 13.04	489.83 ± 20.79
	2000	1906.66 + 68.89	1963.33 ± 119.27

Conc. ng/mL)	Equol	Dz	DHD	O-DMA	GN	Gly	Form	Cm	Bio	6-OH- ODMA	Ent	End
	91.04	87.57	98.95	72.79		94.49	87.36		84.10		78.62	73.60
0 00	76.58 85.70	80.09 86.49	80.88 89.39	71.00 71.70		74.96 91.18	82.08 80.15	76.63 86.97	74.26 54.84		75.17 92.50	73.82 92.78
000	87.32		95.02	81.97		92.45	93.22	81.52	67.67		92.30	77.70

Conclusions

- The sensitive & accurate analysis of biological samples remains a significant challenge.
- Although SPE and PPT can be HTS, LLE where extensive clean up is required, is less prone to matrix effects.
- Column temperature, LC column particles, gradient and run time can influence chromatographic separation.
- Method of validation is always performed with spiked matrix same as the biological sample following the validation criteria.